158 research outputs found

    Macromolecular background signal and non-Gaussian metabolite diffusion determined in human brain using ultra-high diffusion weighting.

    Get PDF
    PURPOSE Definition of a macromolecular MR spectrum based on diffusion properties rather than relaxation time differences and characterization of non-Gaussian diffusion of brain metabolites with strongly diffusion-weighted MR spectroscopy. METHODS Short echo time MRS with strong diffusion-weighting with b-values up to 25 ms/μm2 at two diffusion times was implemented on a Connectom system and applied in combination with simultaneous spectral and diffusion decay modeling. Motion-compensation was performed with a combined method based on the simultaneously acquired water and a macromolecular signal. RESULTS The motion compensation scheme prevented spurious signal decay reflected in very small apparent diffusion constants for macromolecular signal. Macromolecular background signal patterns were determined using multiple fit strategies. Signal decay corresponding to non-Gaussian metabolite diffusion was represented by biexponential fit models yielding parameter estimates for human gray matter that are in line with published rodent data. The optimal fit strategies used constraints for the signal decay of metabolites with limited signal contributions to the overall spectrum. CONCLUSION The determined macromolecular spectrum based on diffusion properties deviates from the conventional one derived from longitudinal relaxation time differences calling for further investigation before use as experimental basis spectrum when fitting clinical MR spectra. The biexponential characterization of metabolite signal decay is the basis for investigations into pathologic alterations of microstructure

    Cortical lamina-dependent blood volume changes in human brain at 7T

    Get PDF
    Cortical layer-dependent high (sub-millimeter) resolution functional magnetic resonance imaging (fMRI) in human or animal brain can be used to address questions regarding the functioning of cortical circuits, such as the effect of different afferent and efferent connectivities on activity in specific cortical layers. The sensitivity of gradient echo (GE) blood oxygenation level-dependent (BOLD) responses to large draining veins reduces its local specificity and can render the interpretation of the underlying laminar neural activity impossible. The application of the more spatially specific cerebral blood volume (CBV)-based fMRI in humans has been hindered by the low sensitivity of the noninvasive modalities available. Here, a vascular space occupancy (VASO) variant, adapted for use at high field, is further optimized to capture layer-dependent activity changes in human motor cortex at sub-millimeter resolution. Acquired activation maps and cortical profiles show that the VASO signal peaks in gray matter at 0.8–1.6 mm depth, and deeper compared to the superficial and vein-dominated GE-BOLD responses. Validation of the VASO signal change versus well-established iron-oxide contrast agent based fMRI methods in animals showed the same cortical profiles of CBV change, after normalization for lamina-dependent baseline CBV. In order to evaluate its potential of revealing small lamina-dependent signal differences due to modulations of the input-output characteristics, layer-dependent VASO responses were investigated in the ipsilateral hemisphere during unilateral finger tapping. Positive activation in ipsilateral primary motor cortex and negative activation in ipsilateral primary sensory cortex were observed. This feature is only visible in high-resolution fMRI where opposing sides of a sulcus can be investigated independently because of a lack of partial volume effects. Based on the results presented here, we conclude that VASO offers good reproducibility, high sensitivity and lower sensitivity than GE-BOLD to changes in larger vessels, making it a valuable tool for layer-dependent fMRI studies in humans

    Combined Evaluation of FDG-PET and MRI Improves Detection and Differentiation of Dementia

    Get PDF
    INTRODUCTION: Various biomarkers have been reported in recent literature regarding imaging abnormalities in different types of dementia. These biomarkers have helped to significantly improve early detection and also differentiation of various dementia syndromes. In this study, we systematically applied whole-brain and region-of-interest (ROI) based support vector machine classification separately and on combined information from different imaging modalities to improve the detection and differentiation of different types of dementia. METHODS: Patients with clinically diagnosed Alzheimer's disease (AD: n = 21), with frontotemporal lobar degeneration (FTLD: n = 14) and control subjects (n = 13) underwent both [F18]fluorodeoxyglucose positron emission tomography (FDG-PET) scanning and magnetic resonance imaging (MRI), together with clinical and behavioral assessment. FDG-PET and MRI data were commonly processed to get a precise overlap of all regions in both modalities. Support vector machine classification was applied with varying parameters separately for both modalities and to combined information obtained from MR and FDG-PET images. ROIs were extracted from comprehensive systematic and quantitative meta-analyses investigating both disorders. RESULTS: Using single-modality whole-brain and ROI information FDG-PET provided highest accuracy rates for both, detection and differentiation of AD and FTLD compared to structural information from MRI. The ROI-based multimodal classification, combining FDG-PET and MRI information, was highly superior to the unimodal approach and to the whole-brain pattern classification. With this method, accuracy rate of up to 92% for the differentiation of the three groups and an accuracy of 94% for the differentiation of AD and FTLD patients was obtained. CONCLUSION: Accuracy rate obtained using combined information from both imaging modalities is the highest reported up to now for differentiation of both types of dementia. Our results indicate a substantial gain in accuracy using combined FDG-PET and MRI information and suggest the incorporation of such approaches to clinical diagnosis and to differential diagnostic procedures of neurodegenerative disorders

    Measuring arterial pulsatility with dynamic inflow magnitude contrast

    Get PDF
    The pulsatility of blood flow through cerebral arteries is clinically important, as it is intrinsically associated with cerebrovascular health. In this study we outline a new MRI approach to measuring the real-time pulsatile flow in cerebral arteries, which is based on the inflow phenomenon associated with fast gradient-recalled-echo acquisitions. Unlike traditional phase-contrast techniques, this new method, which we dub dynamic inflow magnitude contrast (DIMAC), does not require velocity-encoding gradients as sensitivity to flow velocity is derived purely from the inflow effect. We achieved this using a highly accelerated single slice EPI acquisition with a very short TR (15 ms) and a 90° flip angle, thus maximizing inflow contrast. We simulate the spoiled GRE signal in the presence of large arteries and perform a sensitivity analysis. The sensitivity analysis demonstrates that in the regime of high inflow contrast, DIMAC shows much greater sensitivity to flow velocity over blood volume changes. We support this theoretical prediction with in-vivo data collected in two separate experiments designed to demonstrate the utility of the DIMAC signal contrast. We perform a hypercapnia challenge experiment in order to experimentally modulate arterial tone within subjects, and thus modulate the arterial pulsatile flow waveform. We also perform a thigh-cuff release challenge, designed to induce a transient drop in blood pressure, and demonstrate that the continuous DIMAC signal captures the complex transient change in the pulsatile and non-pulsatile components of flow. In summary, this study proposes a new role for a well-established source of MR image contrast and demonstrates its potential for measuring both steady-state and dynamic changes in arterial tone

    Functional cerebral blood volume mapping with simultaneous multi-slice acquisition

    Get PDF
    The aim of this study is to overcome the current limits of brain coverage available with multi-slice echo planar imaging (EPI) for vascular space occupancy (VASO) mapping. By incorporating simultaneous multi-slice (SMS) EPI image acquisition into slice-saturation slab-inversion VASO (SS-SI VASO), many more slices can be acquired for non-invasive functional measurements of blood volume responses. Blood-volume-weighted VASO and gradient echo blood oxygenation level-dependent (GE-BOLD) data were acquired in humans at 7 T with a 32-channel head coil. SMS-VASO was applied in three scenarios: A) high-resolution acquisition of spatially distant brain areas in the visuo-motor network (V1/V5/M1/S1); B) high-resolution acquisition of an imaging slab covering the entire M1/S1 hand regions; and C) low-resolution acquisition with near whole-brain coverage. The results show that the SMS-VASO sequence provided images enabling robust detection of blood volume changes in up to 20 slices with signal readout durations shorter than 150 ms. High-resolution application of SMS-VASO revealed improved specificity of VASO to GM tissue without contamination from large draining veins compared to GE-BOLD in the visual cortex and in the sensory-motor cortex. It is concluded that VASO fMRI with SMS-EPI allows obtaining a reasonable three-dimensional coverage not achievable with standard VASO during the short time period when blood magnetization is approximately nulled. Due to the increased brain coverage and better spatial specificity to GM tissue of VASO compared to GE-BOLD signal, the proposed method may play an important role in high-resolution human fMRI at 7 T

    Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7T

    Get PDF
    Decreases in stimulus-dependent blood oxygenation level dependent (BOLD) signal and their underlying neurovascular origins have recently gained considerable interest. In this study a multi-echo, BOLD-corrected vascular space occupancy (VASO) functional magnetic resonance imaging (fMRI) technique was used to investigate neurovascular responses during stimuli that elicit positive and negative BOLD responses in human brain at 7 T. Stimulus-induced BOLD, cerebral blood volume (CBV), and cerebral blood flow (CBF) changes were measured and analyzed in ‘arterial’ and ‘venous’ blood compartments in macro- and microvasculature. We found that the overall interplay of mean CBV, CBF and BOLD responses is similar for tasks inducing positive and negative BOLD responses. Some aspects of the neurovascular coupling however, such as the temporal response, cortical depth dependence, and the weighting between ‘arterial’ and ‘venous’ contributions, are significantly different for the different task conditions. Namely, while for excitatory tasks the BOLD response peaks at the cortical surface, and the CBV change is similar in cortex and pial vasculature, inhibitory tasks are associated with a maximum negative BOLD response in deeper layers, with CBV showing strong constriction of surface arteries and a faster return to baseline. The different interplays of CBV, CBF and BOLD during excitatory and inhibitory responses suggests different underlying hemodynamic mechanisms

    Ki-67 as a prognostic marker in mantle cell lymphoma—consensus guidelines of the pathology panel of the European MCL Network

    Get PDF
    Mantle cell lymphoma (MCL) has a heterogeneous clinical course and is mainly an aggressive B cell non-Hodgkin lymphoma; however, there are some indolent cases The Ki-67 index, defined by the percentage of Ki-67-positive lymphoma cells on histopathological slides, has been shown to be a very powerful prognostic biomarker. The pathology panel of the European MCL Network evaluated methods to assess the Ki-67 index including stringent counting, digital image analysis, and estimation by eyeballing. Counting of 2 × 500 lymphoma cells is the gold standard to assess the Ki-67 index since this value has been shown to predict survival in prospective randomized trials of the European MCL Network. Estimation by eyeballing and digital image analysis showed a poor concordance with the gold standard (concordance correlation coefficients [CCC] between 0.29 and 0.61 for eyeballing and CCC of 0.24 and 0.37 for two methods of digital image analysis, respectively). Counting a reduced number of lymphoma cells (2 × 100 cells) showed high interobserver agreement (CCC = 0.74). Pitfalls of the Ki-67 index are discussed and guidelines and recommendations for assessing the Ki-67 index in MCL are given

    Diffusion‐weighted MR spectroscopy: Consensus, recommendations, and resources from acquisition to modeling

    Get PDF
    Brain cell structure and function reflect neurodevelopment, plasticity, and aging; and changes can help flag pathological processes such as neurodegeneration and neuroinflammation. Accurate and quantitative methods to noninvasively disentangle cellular structural features are needed and are a substantial focus of brain research. Diffusion‐weighted MRS (dMRS) gives access to diffusion properties of endogenous intracellular brain metabolites that are preferentially located inside specific brain cell populations. Despite its great potential, dMRS remains a challenging technique on all levels: from the data acquisition to the analysis, quantification, modeling, and interpretation of results. These challenges were the motivation behind the organization of the Lorentz Center workshop on “Best Practices & Tools for Diffusion MR Spectroscopy” held in Leiden, the Netherlands, in September 2021. During the workshop, the dMRS community established a set of recommendations to execute robust dMRS studies. This paper provides a description of the steps needed for acquiring, processing, fitting, and modeling dMRS data, and provides links to useful resources
    corecore